Skip to content

Troubleshooting Guide

This guide covers common issues and their solutions when using ModelSEEDagent.

Quick Diagnostics

System Health Check

# Check overall system status
modelseed-agent debug

# Test LLM connectivity
modelseed-agent test-llm-connection

# Validate configuration
modelseed-agent validate-config

# Check tool availability
modelseed-agent check-tools

Environment Verification

# Check Python environment
python --version
pip list | grep -E "(cobra|modelseed|anthropic|openai)"

# Check environment variables
env | grep -E "(MODELSEED|ANTHROPIC|OPENAI|ARGO)"

# Check file permissions
ls -la .env
ls -la data/ logs/ cache/

Installation Issues

Common Installation Problems

ModuleNotFoundError

Problem: ModuleNotFoundError: No module named 'modelseed_agent'

Solutions:

# Reinstall in development mode
pip install -e .

# Check PYTHONPATH
export PYTHONPATH=$PYTHONPATH:$(pwd)

# Verify installation
pip show modelseed-agent

Dependency Conflicts

Problem: Package version conflicts during installation

Solutions:

# Create fresh virtual environment
python -m venv fresh_env
source fresh_env/bin/activate
pip install -e .

# Use conda for better dependency management
conda create -n modelseed python=3.9
conda activate modelseed
conda install -c bioconda cobra
pip install -e .

# Force reinstall problematic packages
pip install --force-reinstall cobra modelseedpy

COBRApy Installation Issues

Problem: COBRApy fails to install or import

Solutions:

# Install from conda-forge
conda install -c bioconda cobra

# Install system dependencies (Ubuntu/Debian)
sudo apt-get install build-essential python3-dev libxml2-dev libxslt-dev

# Install system dependencies (macOS)
brew install libxml2 libxslt

Configuration Issues

API Key Problems

Invalid API Key

Problem: "Invalid API key" or authentication errors

Solutions:

# Check API key format
echo $ANTHROPIC_API_KEY | head -c 20  # Should start with "sk-ant-"
echo $OPENAI_API_KEY | head -c 20     # Should start with "sk-"

# Test API key validity
curl -H "Authorization: Bearer $OPENAI_API_KEY" \
     https://api.openai.com/v1/models

# Check for trailing whitespace
ANTHROPIC_API_KEY=$(echo $ANTHROPIC_API_KEY | tr -d '[:space:]')

Environment Variable Issues

Problem: Environment variables not loaded

Solutions:

# Check .env file location and format
cat .env | head -5

# Load environment manually
source .env
export $(grep -v '^#' .env | xargs)

# Check variable expansion
echo "Key starts with: ${ANTHROPIC_API_KEY:0:10}"

# Use explicit export
export ANTHROPIC_API_KEY="your-key-here"

Debug Configuration Issues

Excessive Logging

Problem: Too much debug output flooding console

Solutions:

# Reduce debug level
export MODELSEED_DEBUG_LEVEL=WARNING

# Disable specific components
export MODELSEED_DEBUG_COBRAKBASE=false
export MODELSEED_DEBUG_LANGGRAPH=false
export MODELSEED_DEBUG_HTTP=false

# Silent mode
export MODELSEED_DEBUG_LEVEL=ERROR

Missing Debug Information

Problem: Not enough information for debugging

Solutions:

# Enable detailed debugging
export MODELSEED_DEBUG_LEVEL=DEBUG
export MODELSEED_DEBUG_TOOLS=true
export MODELSEED_DEBUG_LLM=true
export MODELSEED_LOG_LLM_INPUTS=true

# Check specific component
modelseed-agent --debug-level DEBUG analyze model.xml

Runtime Issues

LLM Connection Problems

Timeout Errors

Problem: LLM requests timing out

Solutions:

# Increase timeout
export LLM_TIMEOUT=120

# Check network connectivity
curl -w "%{time_total}" https://api.anthropic.com/v1/health
ping -c 4 api.openai.com

# Use different LLM provider
modelseed-agent --llm openai analyze

Rate Limiting

Problem: "Rate limit exceeded" errors

Solutions:

# Add delays between requests
export LLM_REQUEST_DELAY=1

# Use different API key tier
# Upgrade your API plan

# Implement exponential backoff
export LLM_MAX_RETRIES=5
export LLM_RETRY_DELAY=2

SSL/Certificate Issues

Problem: SSL certificate verification failures

Solutions:

# Update certificates
pip install --upgrade certifi

# Temporary: disable SSL verification (not recommended for production)
export SSL_VERIFY=false

# Use specific certificate bundle
export SSL_CERT_FILE=/path/to/cacert.pem

Tool Execution Issues

COBRApy Solver Problems

Problem: "No solver available" or solver errors

Solutions:

# Check available solvers
python -c "import cobra; print(cobra.Configuration().solver)"

# Install GLPK solver
# Ubuntu/Debian
sudo apt-get install glpk-utils

# macOS
brew install glpk

# Configure solver explicitly
export COBRA_DEFAULT_SOLVER=glpk

Memory Issues

Problem: Out of memory errors during large model analysis

Solutions:

# Increase memory limits
export MODELSEED_MAX_MEMORY_GB=16

# Enable memory monitoring
export MODELSEED_MEMORY_WARNING_THRESHOLD=0.8

# Use memory-efficient options
export COBRA_MEMORY_EFFICIENT=true

# Reduce parallel workers
export MODELSEED_MAX_WORKERS=2

File Permission Issues

Problem: Permission denied errors accessing files

Solutions:

# Check file permissions
ls -la data/ logs/ cache/

# Fix permissions
chmod -R 755 data/
chmod -R 755 logs/
chmod -R 755 cache/

# Check directory ownership
sudo chown -R $USER:$USER data/ logs/ cache/

Performance Issues

Slow Analysis Performance

Problem: Analysis taking too long

Solutions:

# Enable caching
export MODELSEED_CACHE_ENABLED=true

# Increase parallel workers
export MODELSEED_MAX_WORKERS=8
export MODELSEED_PARALLEL_TOOLS=true

# Use faster solver
export COBRA_DEFAULT_SOLVER=cplex  # if available

# Monitor performance
modelseed-agent monitor --performance

Cache Issues

Problem: Cache not working or corrupted

Solutions:

# Clear cache
rm -rf cache/
mkdir cache/

# Disable cache temporarily
export MODELSEED_CACHE_ENABLED=false

# Check cache permissions
ls -la cache/

# Rebuild cache
modelseed-agent rebuild-cache

Data Issues

Model Loading Problems

Invalid Model Format

Problem: "Cannot load model" or format errors

Solutions:

# Validate model format
python -c "import cobra; model = cobra.io.read_sbml_model('model.xml'); print(f'Model loaded: {len(model.reactions)} reactions')"

# Convert model format
cobra-convert -i model.json -o model.xml

# Check model integrity
modelseed-agent validate-model model.xml

Missing Model Files

Problem: Model files not found

Solutions:

# Check file paths
ls -la data/examples/
find . -name "*.xml" -o -name "*.json"

# Use absolute paths
modelseed-agent analyze /full/path/to/model.xml

# Download example models
modelseed-agent download-examples

Database Issues

Biochemistry Database Problems

Problem: Biochemistry database not available

Solutions:

# Check database location
ls -la data/biochem.db

# Rebuild database
python scripts/setup_biochem_database.py

# Use remote database
export MODELSEED_USE_REMOTE_BIOCHEM=true

# Check database integrity
modelseed-agent validate-biochem-db

Network Issues

Proxy Configuration

Corporate Proxy Issues

Problem: Cannot connect through corporate proxy

Solutions:

# Configure proxy
export HTTP_PROXY=http://proxy.company.com:8080
export HTTPS_PROXY=https://proxy.company.com:8080
export NO_PROXY=localhost,127.0.0.1,.company.com

# Test proxy connectivity
curl --proxy $HTTP_PROXY https://api.anthropic.com/v1/health

# Use proxy with authentication
export HTTP_PROXY=http://username:password@proxy.company.com:8080

Firewall Issues

Problem: Firewall blocking connections

Solutions:

# Check required domains
# api.anthropic.com
# api.openai.com
# your-argo-gateway.com

# Test connectivity
telnet api.anthropic.com 443
nc -zv api.openai.com 443

# Use alternative ports/endpoints if available

Development Issues

Import Errors

Circular Import Issues

Problem: Circular import errors in development

Solutions:

# Use lazy imports
def get_agent():
    from src.agents.metabolic import MetabolicAgent
    return MetabolicAgent()

# Restructure imports
# Move shared code to separate modules
# Use dependency injection

Module Path Issues

Problem: Modules not found in development

Solutions:

# Add to PYTHONPATH
export PYTHONPATH=$PYTHONPATH:$(pwd)/src

# Use relative imports correctly
from ..agents import MetabolicAgent  # Instead of absolute imports

# Install in development mode
pip install -e .

Testing Issues

Test Failures

Problem: Tests failing in development

Solutions:

# Run specific test
pytest tests/test_specific.py -v

# Skip slow tests
pytest -m "not slow"

# Run with debug output
pytest -s --log-cli-level=DEBUG

# Update test fixtures
pytest --fixtures-update

Error Code Reference

Common Error Codes

Code Meaning Solution
E001 Invalid API key Check API key format and validity
E002 LLM timeout Increase timeout or check network
E003 Model format error Validate and convert model format
E004 Solver not available Install and configure solver
E005 Memory limit exceeded Increase memory limit or reduce model size
E006 Cache corruption Clear and rebuild cache
E007 Database error Rebuild biochemistry database
E008 Permission denied Fix file/directory permissions
E009 Network error Check connectivity and proxy settings
E010 Configuration error Validate configuration settings

Warning Codes

Code Meaning Action
W001 Low memory warning Monitor memory usage
W002 Cache miss Normal, will populate cache
W003 Solver suboptimal Consider using different solver
W004 Model quality warning Review model validation results
W005 Rate limit warning Slow down request rate

Getting Help

Diagnostic Information

When reporting issues, include:

# System information
modelseed-agent debug > debug_info.txt

# Version information
modelseed-agent --version
python --version
pip list > package_list.txt

# Log files
tail -100 logs/current/default/tool_audits/*.json

# Configuration (remove sensitive info)
modelseed-agent show-config --anonymize

Support Channels

  1. GitHub Issues: Report bugs and feature requests
  2. Documentation: Check this troubleshooting guide
  3. Community Forum: Ask questions and share solutions
  4. Email Support: For enterprise customers

Before Reporting Issues

  1. Check this troubleshooting guide
  2. Search existing GitHub issues
  3. Test with minimal example
  4. Gather diagnostic information
  5. Include reproduction steps

Advanced Troubleshooting

Debug Mode Analysis

# Enable comprehensive debugging
export MODELSEED_DEBUG_LEVEL=TRACE
export MODELSEED_DEBUG_ALL=true

# Profile performance
modelseed-agent profile analyze model.xml

# Memory profiling
modelseed-agent memory-profile analyze model.xml

Custom Debugging

# Add custom debug points
import logging
logger = logging.getLogger(__name__)

def debug_analysis(model, step):
    logger.debug(f"Analysis step {step}: {len(model.reactions)} reactions")

# Use with breakpoints
import pdb; pdb.set_trace()

Log Analysis

# Search for errors
grep -r "ERROR" logs/

# Analyze performance
grep -r "duration" logs/ | sort -k3 -n

# Find memory issues
grep -r "memory" logs/ | grep -i warning

This troubleshooting guide covers most common issues. For specific problems not covered here, please consult the API Documentation or open an issue on GitHub.