Reasoning Framework API Documentation
ModelSEEDagent Intelligence Enhancement Framework API Version: 1.0 Last Updated: June 18, 2025
Overview
The Reasoning Framework API provides programmatic access to ModelSEEDagent's enhanced intelligence capabilities. This comprehensive API enables developers to integrate advanced reasoning, quality assessment, and continuous learning features into their applications.
Architecture Overview
Core Components
Intelligence Enhancement Framework
├── Phase 1: Enhanced Prompt Management
├── Phase 2: Context Enhancement
├── Phase 3: Quality Validation
├── Phase 4: Artifact Intelligence + Self-Reflection
└── Phase 5: Integrated Validation
API Endpoints
Base URL
Authentication
Phase 1: Enhanced Prompt Management
Enhanced Prompt Provider
Get Optimized Prompt
Parameters:
- prompt_type
(string): Type of analysis prompt
- context
(object, optional): Additional context for prompt optimization
Example Request:
import requests
response = requests.get(
"https://api.modelseedagent.org/v1/reasoning/prompts/enhanced/fba_analysis",
headers=headers,
params={
"organism": "E. coli",
"condition": "glucose_limitation",
"optimization_target": "growth_rate"
}
)
Response:
{
"prompt_id": "fba_analysis_optimized_001",
"prompt_text": "Analyze the metabolic flux distribution...",
"optimization_score": 0.94,
"version": "2.3.1",
"context_enhancements": [
"glucose_metabolism_constraints",
"aerobic_respiration_pathways"
]
}
Reasoning Trace Logger
Start Reasoning Trace
Request Body:
{
"trace_id": "analysis_trace_001",
"query": "Analyze E. coli growth optimization",
"analysis_type": "metabolic_flux_analysis",
"user_id": "user_123"
}
Response:
{
"trace_id": "analysis_trace_001",
"status": "active",
"start_time": "2025-06-18T10:30:00Z",
"expected_completion": "2025-06-18T10:31:30Z"
}
Log Reasoning Step
Request Body:
{
"step_number": 1,
"step_type": "tool_selection",
"decision": "selected_fba_analysis",
"reasoning": "FBA provides baseline growth rate measurements",
"confidence": 0.92,
"alternatives_considered": ["flux_sampling", "gene_deletion"],
"timestamp": "2025-06-18T10:30:15Z"
}
Get Reasoning Trace
Response:
{
"trace_id": "analysis_trace_001",
"status": "completed",
"total_steps": 8,
"quality_score": 0.91,
"transparency_score": 0.89,
"steps": [
{
"step_number": 1,
"step_type": "tool_selection",
"decision": "selected_fba_analysis",
"reasoning": "FBA provides baseline growth rate measurements",
"confidence": 0.92,
"timestamp": "2025-06-18T10:30:15Z"
}
]
}
Phase 2: Context Enhancement
Context Enhancer
Enhance Query Context
Request Body:
{
"query": "Analyze E. coli metabolism",
"organism": "Escherichia coli K-12",
"experimental_conditions": {
"temperature": 37,
"ph": 7.0,
"carbon_source": "glucose",
"oxygen_availability": "aerobic"
}
}
Response:
{
"enhanced_context": {
"biochemical_pathways": [
"glycolysis",
"citric_acid_cycle",
"electron_transport_chain"
],
"relevant_constraints": [
"glucose_uptake_rate_limit",
"oxygen_consumption_constraint"
],
"knowledge_sources": [
"KEGG_pathways",
"BioCyc_database",
"literature_data"
]
},
"enhancement_score": 0.94,
"confidence": 0.91
}
Get Available Context Types
Response:
{
"context_types": [
{
"type": "biochemical_pathways",
"description": "Metabolic pathway information",
"coverage": "comprehensive"
},
{
"type": "regulatory_networks",
"description": "Gene regulatory information",
"coverage": "extensive"
},
{
"type": "experimental_conditions",
"description": "Growth and environmental constraints",
"coverage": "standard_conditions"
}
]
}
Phase 3: Quality Validation
Integrated Quality System
Assess Analysis Quality
Request Body:
{
"analysis_id": "analysis_001",
"analysis_results": {
"growth_rate": 0.87,
"flux_distribution": {...},
"gene_essentiality": {...}
},
"reasoning_trace": "trace_001",
"artifacts_generated": ["fba_result.json", "flux_analysis.json"]
}
Response:
{
"quality_assessment": {
"overall_score": 0.924,
"biological_accuracy": 0.94,
"reasoning_transparency": 0.89,
"synthesis_effectiveness": 0.91,
"artifact_usage_quality": 0.87
},
"validation_details": {
"passed_checks": 15,
"total_checks": 17,
"warnings": ["minor_pathway_gaps"],
"recommendations": ["include_amino_acid_synthesis"]
},
"confidence_intervals": {
"overall_score": [0.91, 0.94],
"biological_accuracy": [0.92, 0.96]
}
}
Composite Metrics Calculator
Calculate Composite Metrics
Request Body:
{
"metrics": {
"execution_time": 28.5,
"quality_score": 0.924,
"user_satisfaction": 0.94,
"hypothesis_count": 3,
"artifact_utilization": 0.78
},
"weights": {
"quality": 0.4,
"performance": 0.2,
"user_experience": 0.2,
"scientific_value": 0.2
}
}
Response:
{
"composite_score": 0.887,
"component_scores": {
"quality_component": 0.924,
"performance_component": 0.82,
"user_experience_component": 0.94,
"scientific_value_component": 0.86
},
"trend_analysis": {
"30_day_improvement": 0.12,
"performance_trend": "improving"
}
}
Phase 4: Artifact Intelligence + Self-Reflection
Artifact Intelligence Engine
Register Artifact
Request Body:
{
"artifact_path": "/results/fba_analysis_001.json",
"metadata": {
"type": "fba_results",
"source_tool": "cobra_fba",
"analysis_id": "analysis_001",
"format": "json",
"size_bytes": 15420
}
}
Response:
{
"artifact_id": "artifact_12345",
"registration_status": "success",
"initial_assessment": {
"completeness": 0.92,
"estimated_quality": 0.89,
"context_relevance": 0.91
}
}
Perform Artifact Self-Assessment
Response:
{
"assessment_id": "assessment_001",
"overall_score": 0.918,
"detailed_scores": {
"completeness": 0.94,
"consistency": 0.91,
"biological_validity": 0.96,
"methodological_soundness": 0.88,
"contextual_relevance": 0.92
},
"confidence_score": 0.89,
"uncertainty_sources": [
"limited_pathway_coverage",
"missing_regulatory_constraints"
],
"improvement_opportunities": [
"include_additional_pathways",
"add_regulatory_validation"
]
}
Analyze Contextual Intelligence
Response:
{
"contextual_intelligence": {
"experimental_context": "Growth rate optimization under glucose limitation",
"biological_significance": "Central carbon metabolism efficiency analysis",
"methodological_implications": "Constraint-based modeling approach",
"cross_scale_connections": [
"molecular_level_flux_rates",
"cellular_growth_phenotype",
"system_level_optimization"
]
},
"relevance_score": 0.93,
"knowledge_gaps": ["regulatory_network_data"],
"related_artifacts": ["artifact_12344", "artifact_12346"]
}
Self-Reflection Engine
Capture Reasoning Trace for Reflection
Request Body:
{
"trace_id": "trace_001",
"query": "Analyze E. coli growth optimization",
"response": "Analysis shows glucose uptake limitation...",
"tools_used": ["fba_analysis", "flux_variability"],
"reasoning_steps": [...],
"outcome_quality": 0.92
}
Perform Meta-Analysis
Request Body:
{
"trace_ids": ["trace_001", "trace_002", "trace_003"],
"analysis_window": "7_days",
"pattern_types": ["success_patterns", "efficiency_patterns", "quality_patterns"]
}
Response:
{
"meta_analysis_id": "meta_001",
"patterns_discovered": [
{
"pattern_type": "success_pattern",
"pattern_id": "pattern_001",
"description": "FBA followed by flux variability analysis",
"frequency": 12,
"success_rate": 0.89,
"effectiveness_score": 0.91
}
],
"bias_analysis": {
"biases_detected": ["tool_selection_bias"],
"bias_scores": {"confirmation_bias": 0.05, "anchoring_bias": 0.03},
"mitigation_suggestions": ["diversify_tool_selection"]
},
"improvement_recommendations": [
"increase_flux_sampling_usage",
"enhance_regulatory_analysis"
]
}
Generate Improvement Plan
Response:
{
"improvement_plan": {
"plan_id": "improvement_001",
"target_areas": [
"efficiency_optimization",
"quality_enhancement",
"pattern_diversification"
],
"specific_actions": [
{
"action": "implement_parallel_tool_execution",
"expected_impact": "15% time reduction",
"priority": "high"
},
{
"action": "enhance_pathway_validation",
"expected_impact": "8% quality improvement",
"priority": "medium"
}
],
"success_metrics": [
"execution_time_reduction",
"quality_score_improvement",
"user_satisfaction_increase"
]
}
}
Meta-Reasoning Engine
Optimize Cognitive Strategy
Request Body:
{
"current_strategy": "analytical",
"analysis_context": {
"complexity": "high",
"time_constraints": "moderate",
"accuracy_requirements": "high"
},
"performance_history": [...]
}
Response:
{
"optimized_strategy": {
"primary_approach": "systematic",
"secondary_approach": "analytical",
"cognitive_allocation": {
"systematic_thinking": 0.6,
"analytical_reasoning": 0.3,
"creative_exploration": 0.1
},
"expected_performance": {
"quality_improvement": 0.08,
"efficiency_gain": 0.05
}
}
}
Phase 5: Integrated Validation
Improvement Tracker
Record Analysis Metrics
Request Body:
{
"analysis_id": "analysis_001",
"metrics": {
"overall_quality": 0.924,
"biological_accuracy": 0.94,
"reasoning_transparency": 0.89,
"synthesis_effectiveness": 0.91,
"artifact_usage_rate": 0.78,
"hypothesis_count": 3,
"execution_time": 28.5,
"error_rate": 0.002
}
}
Get Quality Trend
Parameters:
- days
(integer): Number of days to analyze (default: 30)
Response:
{
"trend_analysis": {
"period_days": 30,
"metrics_count": 156,
"quality_trend": {
"current_average": 0.924,
"period_average": 0.891,
"improvement": 0.15,
"stability": 0.94
},
"performance_trend": {
"average_time": 28.5,
"efficiency_improvement": 0.12,
"consistency": 0.89
}
}
}
Get Improvement Recommendations
Response:
{
"recommendations": [
{
"type": "quality_optimization",
"priority": "high",
"title": "Enhance Pathway Validation",
"description": "Strengthen biochemical pathway validation",
"suggested_actions": [
"integrate_additional_databases",
"implement_cross_validation",
"enhance_constraint_checking"
],
"confidence": 0.87,
"expected_impact": "8% quality improvement"
}
]
}
Integrated Validator
Run Validation Suite
Request Body:
{
"validation_type": "comprehensive",
"test_categories": ["integration", "performance", "quality", "regression"],
"priority_filter": "high"
}
Response:
{
"validation_id": "validation_001",
"status": "running",
"estimated_completion": "2025-06-18T11:45:00Z",
"test_count": 25,
"progress_endpoint": "/validation/validation_001/status"
}
Get Validation Results
Response:
{
"validation_summary": {
"total_tests": 25,
"passed_tests": 23,
"failed_tests": 1,
"error_tests": 1,
"success_rate": 0.92,
"average_quality_score": 0.887,
"average_execution_time": 31.2
},
"detailed_results": [...],
"recommendations": [
"investigate_failed_integration_test",
"optimize_performance_bottleneck"
]
}
Data Models
Core Data Types
ReasoningMetrics
class ReasoningMetrics:
overall_quality: float
biological_accuracy: float
reasoning_transparency: float
synthesis_effectiveness: float
artifact_usage_rate: float
hypothesis_count: int
execution_time: float
error_rate: float
timestamp: str
analysis_id: str
QualityAssessment
class QualityAssessment:
overall_score: float
detailed_scores: Dict[str, float]
confidence_score: float
uncertainty_sources: List[str]
improvement_opportunities: List[str]
validation_timestamp: str
ArtifactMetadata
class ArtifactMetadata:
artifact_id: str
file_path: str
artifact_type: str
source_tool: str
format: str
size_bytes: int
creation_timestamp: str
analysis_id: str
Error Handling
Standard Error Responses
Authentication Error
{
"error": {
"code": "AUTHENTICATION_FAILED",
"message": "Invalid API key provided",
"status": 401
}
}
Validation Error
{
"error": {
"code": "VALIDATION_FAILED",
"message": "Invalid request parameters",
"details": {
"field": "quality_score",
"issue": "must be between 0 and 1"
},
"status": 400
}
}
Rate Limit Error
{
"error": {
"code": "RATE_LIMIT_EXCEEDED",
"message": "API rate limit exceeded",
"retry_after": 60,
"status": 429
}
}
SDK Examples
Python SDK
Installation
Basic Usage
from modelseed_reasoning import ReasoningFramework
# Initialize client
client = ReasoningFramework(api_key="your_api_key")
# Enhanced analysis with full intelligence features
result = client.analyze(
query="Analyze E. coli growth under glucose limitation",
enable_reasoning_trace=True,
enable_quality_assessment=True,
enable_artifact_intelligence=True,
enable_self_reflection=True
)
# Access results
print(f"Quality Score: {result.quality_score}")
print(f"Reasoning Trace: {result.reasoning_trace}")
print(f"Generated Hypotheses: {result.hypotheses}")
print(f"Improvement Suggestions: {result.improvement_suggestions}")
Advanced Usage
# Start reasoning trace
trace = client.start_reasoning_trace(
query="Complex metabolic analysis",
analysis_type="comprehensive"
)
# Enhance context
enhanced_context = client.enhance_context(
query="Analyze E. coli metabolism",
organism="E. coli K-12",
conditions={"carbon_source": "glucose", "oxygen": "aerobic"}
)
# Perform analysis with enhanced features
analysis = client.analyze_with_intelligence(
query="Optimized query text",
context=enhanced_context,
trace_id=trace.trace_id,
quality_threshold=0.85
)
# Get self-reflection insights
insights = client.get_self_reflection_insights(
analysis_id=analysis.analysis_id,
include_patterns=True,
include_biases=True
)
JavaScript SDK
Installation
Basic Usage
import { ReasoningFramework } from '@modelseed/reasoning-framework';
const client = new ReasoningFramework({
apiKey: 'your_api_key',
baseUrl: 'https://api.modelseedagent.org/v1/reasoning'
});
// Enhanced analysis
const result = await client.analyze({
query: 'Analyze E. coli growth under glucose limitation',
enableReasoningTrace: true,
enableQualityAssessment: true,
enableArtifactIntelligence: true
});
console.log('Quality Score:', result.qualityScore);
console.log('Hypotheses:', result.hypotheses);
Rate Limits and Quotas
Standard Limits
- Analysis Requests: 100 per hour
- Validation Requests: 20 per hour
- Trace Queries: 500 per hour
- Quality Assessments: 200 per hour
Premium Limits
- Analysis Requests: 1000 per hour
- Validation Requests: 100 per hour
- Trace Queries: 2000 per hour
- Quality Assessments: 1000 per hour
Webhooks
Event Types
analysis.completed
: Analysis finished successfullyquality.threshold_exceeded
: Quality score above thresholdvalidation.failed
: Validation test failureimprovement.recommendation_available
: New improvement suggestion
Webhook Configuration
Request Body:
{
"url": "https://your-app.com/webhooks/reasoning",
"events": ["analysis.completed", "quality.threshold_exceeded"],
"secret": "your_webhook_secret"
}
Changelog
Version 1.0 (June 18, 2025)
- Initial release of complete intelligence enhancement framework
- All Phase 1-5 components available
- Comprehensive API coverage for all features
- Python and JavaScript SDKs released
For additional support, contact the ModelSEEDagent development team API documentation is automatically updated with each framework release