Skip to content

Reasoning Framework API Documentation

ModelSEEDagent Intelligence Enhancement Framework API Version: 1.0 Last Updated: June 18, 2025

Overview

The Reasoning Framework API provides programmatic access to ModelSEEDagent's enhanced intelligence capabilities. This comprehensive API enables developers to integrate advanced reasoning, quality assessment, and continuous learning features into their applications.

Architecture Overview

Core Components

Intelligence Enhancement Framework
├── Phase 1: Enhanced Prompt Management
├── Phase 2: Context Enhancement
├── Phase 3: Quality Validation
├── Phase 4: Artifact Intelligence + Self-Reflection
└── Phase 5: Integrated Validation

API Endpoints

Base URL

https://api.modelseedagent.org/v1/reasoning/

Authentication

headers = {
    "Authorization": "Bearer YOUR_API_KEY",
    "Content-Type": "application/json"
}

Phase 1: Enhanced Prompt Management

Enhanced Prompt Provider

Get Optimized Prompt

GET /prompts/enhanced/{prompt_type}

Parameters: - prompt_type (string): Type of analysis prompt - context (object, optional): Additional context for prompt optimization

Example Request:

import requests

response = requests.get(
    "https://api.modelseedagent.org/v1/reasoning/prompts/enhanced/fba_analysis",
    headers=headers,
    params={
        "organism": "E. coli",
        "condition": "glucose_limitation",
        "optimization_target": "growth_rate"
    }
)

Response:

{
    "prompt_id": "fba_analysis_optimized_001",
    "prompt_text": "Analyze the metabolic flux distribution...",
    "optimization_score": 0.94,
    "version": "2.3.1",
    "context_enhancements": [
        "glucose_metabolism_constraints",
        "aerobic_respiration_pathways"
    ]
}

Reasoning Trace Logger

Start Reasoning Trace

POST /traces/start

Request Body:

{
    "trace_id": "analysis_trace_001",
    "query": "Analyze E. coli growth optimization",
    "analysis_type": "metabolic_flux_analysis",
    "user_id": "user_123"
}

Response:

{
    "trace_id": "analysis_trace_001",
    "status": "active",
    "start_time": "2025-06-18T10:30:00Z",
    "expected_completion": "2025-06-18T10:31:30Z"
}

Log Reasoning Step

POST /traces/{trace_id}/steps

Request Body:

{
    "step_number": 1,
    "step_type": "tool_selection",
    "decision": "selected_fba_analysis",
    "reasoning": "FBA provides baseline growth rate measurements",
    "confidence": 0.92,
    "alternatives_considered": ["flux_sampling", "gene_deletion"],
    "timestamp": "2025-06-18T10:30:15Z"
}

Get Reasoning Trace

GET /traces/{trace_id}

Response:

{
    "trace_id": "analysis_trace_001",
    "status": "completed",
    "total_steps": 8,
    "quality_score": 0.91,
    "transparency_score": 0.89,
    "steps": [
        {
            "step_number": 1,
            "step_type": "tool_selection",
            "decision": "selected_fba_analysis",
            "reasoning": "FBA provides baseline growth rate measurements",
            "confidence": 0.92,
            "timestamp": "2025-06-18T10:30:15Z"
        }
    ]
}

Phase 2: Context Enhancement

Context Enhancer

Enhance Query Context

POST /context/enhance

Request Body:

{
    "query": "Analyze E. coli metabolism",
    "organism": "Escherichia coli K-12",
    "experimental_conditions": {
        "temperature": 37,
        "ph": 7.0,
        "carbon_source": "glucose",
        "oxygen_availability": "aerobic"
    }
}

Response:

{
    "enhanced_context": {
        "biochemical_pathways": [
            "glycolysis",
            "citric_acid_cycle",
            "electron_transport_chain"
        ],
        "relevant_constraints": [
            "glucose_uptake_rate_limit",
            "oxygen_consumption_constraint"
        ],
        "knowledge_sources": [
            "KEGG_pathways",
            "BioCyc_database",
            "literature_data"
        ]
    },
    "enhancement_score": 0.94,
    "confidence": 0.91
}

Get Available Context Types

GET /context/types

Response:

{
    "context_types": [
        {
            "type": "biochemical_pathways",
            "description": "Metabolic pathway information",
            "coverage": "comprehensive"
        },
        {
            "type": "regulatory_networks",
            "description": "Gene regulatory information",
            "coverage": "extensive"
        },
        {
            "type": "experimental_conditions",
            "description": "Growth and environmental constraints",
            "coverage": "standard_conditions"
        }
    ]
}

Phase 3: Quality Validation

Integrated Quality System

Assess Analysis Quality

POST /quality/assess

Request Body:

{
    "analysis_id": "analysis_001",
    "analysis_results": {
        "growth_rate": 0.87,
        "flux_distribution": {...},
        "gene_essentiality": {...}
    },
    "reasoning_trace": "trace_001",
    "artifacts_generated": ["fba_result.json", "flux_analysis.json"]
}

Response:

{
    "quality_assessment": {
        "overall_score": 0.924,
        "biological_accuracy": 0.94,
        "reasoning_transparency": 0.89,
        "synthesis_effectiveness": 0.91,
        "artifact_usage_quality": 0.87
    },
    "validation_details": {
        "passed_checks": 15,
        "total_checks": 17,
        "warnings": ["minor_pathway_gaps"],
        "recommendations": ["include_amino_acid_synthesis"]
    },
    "confidence_intervals": {
        "overall_score": [0.91, 0.94],
        "biological_accuracy": [0.92, 0.96]
    }
}

Composite Metrics Calculator

Calculate Composite Metrics

POST /metrics/composite

Request Body:

{
    "metrics": {
        "execution_time": 28.5,
        "quality_score": 0.924,
        "user_satisfaction": 0.94,
        "hypothesis_count": 3,
        "artifact_utilization": 0.78
    },
    "weights": {
        "quality": 0.4,
        "performance": 0.2,
        "user_experience": 0.2,
        "scientific_value": 0.2
    }
}

Response:

{
    "composite_score": 0.887,
    "component_scores": {
        "quality_component": 0.924,
        "performance_component": 0.82,
        "user_experience_component": 0.94,
        "scientific_value_component": 0.86
    },
    "trend_analysis": {
        "30_day_improvement": 0.12,
        "performance_trend": "improving"
    }
}

Phase 4: Artifact Intelligence + Self-Reflection

Artifact Intelligence Engine

Register Artifact

POST /artifacts/register

Request Body:

{
    "artifact_path": "/results/fba_analysis_001.json",
    "metadata": {
        "type": "fba_results",
        "source_tool": "cobra_fba",
        "analysis_id": "analysis_001",
        "format": "json",
        "size_bytes": 15420
    }
}

Response:

{
    "artifact_id": "artifact_12345",
    "registration_status": "success",
    "initial_assessment": {
        "completeness": 0.92,
        "estimated_quality": 0.89,
        "context_relevance": 0.91
    }
}

Perform Artifact Self-Assessment

POST /artifacts/{artifact_id}/self-assess

Response:

{
    "assessment_id": "assessment_001",
    "overall_score": 0.918,
    "detailed_scores": {
        "completeness": 0.94,
        "consistency": 0.91,
        "biological_validity": 0.96,
        "methodological_soundness": 0.88,
        "contextual_relevance": 0.92
    },
    "confidence_score": 0.89,
    "uncertainty_sources": [
        "limited_pathway_coverage",
        "missing_regulatory_constraints"
    ],
    "improvement_opportunities": [
        "include_additional_pathways",
        "add_regulatory_validation"
    ]
}

Analyze Contextual Intelligence

GET /artifacts/{artifact_id}/context-analysis

Response:

{
    "contextual_intelligence": {
        "experimental_context": "Growth rate optimization under glucose limitation",
        "biological_significance": "Central carbon metabolism efficiency analysis",
        "methodological_implications": "Constraint-based modeling approach",
        "cross_scale_connections": [
            "molecular_level_flux_rates",
            "cellular_growth_phenotype",
            "system_level_optimization"
        ]
    },
    "relevance_score": 0.93,
    "knowledge_gaps": ["regulatory_network_data"],
    "related_artifacts": ["artifact_12344", "artifact_12346"]
}

Self-Reflection Engine

Capture Reasoning Trace for Reflection

POST /reflection/capture-trace

Request Body:

{
    "trace_id": "trace_001",
    "query": "Analyze E. coli growth optimization",
    "response": "Analysis shows glucose uptake limitation...",
    "tools_used": ["fba_analysis", "flux_variability"],
    "reasoning_steps": [...],
    "outcome_quality": 0.92
}

Perform Meta-Analysis

POST /reflection/meta-analysis

Request Body:

{
    "trace_ids": ["trace_001", "trace_002", "trace_003"],
    "analysis_window": "7_days",
    "pattern_types": ["success_patterns", "efficiency_patterns", "quality_patterns"]
}

Response:

{
    "meta_analysis_id": "meta_001",
    "patterns_discovered": [
        {
            "pattern_type": "success_pattern",
            "pattern_id": "pattern_001",
            "description": "FBA followed by flux variability analysis",
            "frequency": 12,
            "success_rate": 0.89,
            "effectiveness_score": 0.91
        }
    ],
    "bias_analysis": {
        "biases_detected": ["tool_selection_bias"],
        "bias_scores": {"confirmation_bias": 0.05, "anchoring_bias": 0.03},
        "mitigation_suggestions": ["diversify_tool_selection"]
    },
    "improvement_recommendations": [
        "increase_flux_sampling_usage",
        "enhance_regulatory_analysis"
    ]
}

Generate Improvement Plan

POST /reflection/improvement-plan

Response:

{
    "improvement_plan": {
        "plan_id": "improvement_001",
        "target_areas": [
            "efficiency_optimization",
            "quality_enhancement",
            "pattern_diversification"
        ],
        "specific_actions": [
            {
                "action": "implement_parallel_tool_execution",
                "expected_impact": "15% time reduction",
                "priority": "high"
            },
            {
                "action": "enhance_pathway_validation",
                "expected_impact": "8% quality improvement",
                "priority": "medium"
            }
        ],
        "success_metrics": [
            "execution_time_reduction",
            "quality_score_improvement",
            "user_satisfaction_increase"
        ]
    }
}

Meta-Reasoning Engine

Optimize Cognitive Strategy

POST /meta-reasoning/optimize-strategy

Request Body:

{
    "current_strategy": "analytical",
    "analysis_context": {
        "complexity": "high",
        "time_constraints": "moderate",
        "accuracy_requirements": "high"
    },
    "performance_history": [...]
}

Response:

{
    "optimized_strategy": {
        "primary_approach": "systematic",
        "secondary_approach": "analytical",
        "cognitive_allocation": {
            "systematic_thinking": 0.6,
            "analytical_reasoning": 0.3,
            "creative_exploration": 0.1
        },
        "expected_performance": {
            "quality_improvement": 0.08,
            "efficiency_gain": 0.05
        }
    }
}

Phase 5: Integrated Validation

Improvement Tracker

Record Analysis Metrics

POST /improvement/record-metrics

Request Body:

{
    "analysis_id": "analysis_001",
    "metrics": {
        "overall_quality": 0.924,
        "biological_accuracy": 0.94,
        "reasoning_transparency": 0.89,
        "synthesis_effectiveness": 0.91,
        "artifact_usage_rate": 0.78,
        "hypothesis_count": 3,
        "execution_time": 28.5,
        "error_rate": 0.002
    }
}

Get Quality Trend

GET /improvement/quality-trend

Parameters: - days (integer): Number of days to analyze (default: 30)

Response:

{
    "trend_analysis": {
        "period_days": 30,
        "metrics_count": 156,
        "quality_trend": {
            "current_average": 0.924,
            "period_average": 0.891,
            "improvement": 0.15,
            "stability": 0.94
        },
        "performance_trend": {
            "average_time": 28.5,
            "efficiency_improvement": 0.12,
            "consistency": 0.89
        }
    }
}

Get Improvement Recommendations

GET /improvement/recommendations

Response:

{
    "recommendations": [
        {
            "type": "quality_optimization",
            "priority": "high",
            "title": "Enhance Pathway Validation",
            "description": "Strengthen biochemical pathway validation",
            "suggested_actions": [
                "integrate_additional_databases",
                "implement_cross_validation",
                "enhance_constraint_checking"
            ],
            "confidence": 0.87,
            "expected_impact": "8% quality improvement"
        }
    ]
}

Integrated Validator

Run Validation Suite

POST /validation/run-suite

Request Body:

{
    "validation_type": "comprehensive",
    "test_categories": ["integration", "performance", "quality", "regression"],
    "priority_filter": "high"
}

Response:

{
    "validation_id": "validation_001",
    "status": "running",
    "estimated_completion": "2025-06-18T11:45:00Z",
    "test_count": 25,
    "progress_endpoint": "/validation/validation_001/status"
}

Get Validation Results

GET /validation/{validation_id}/results

Response:

{
    "validation_summary": {
        "total_tests": 25,
        "passed_tests": 23,
        "failed_tests": 1,
        "error_tests": 1,
        "success_rate": 0.92,
        "average_quality_score": 0.887,
        "average_execution_time": 31.2
    },
    "detailed_results": [...],
    "recommendations": [
        "investigate_failed_integration_test",
        "optimize_performance_bottleneck"
    ]
}

Data Models

Core Data Types

ReasoningMetrics

class ReasoningMetrics:
    overall_quality: float
    biological_accuracy: float
    reasoning_transparency: float
    synthesis_effectiveness: float
    artifact_usage_rate: float
    hypothesis_count: int
    execution_time: float
    error_rate: float
    timestamp: str
    analysis_id: str

QualityAssessment

class QualityAssessment:
    overall_score: float
    detailed_scores: Dict[str, float]
    confidence_score: float
    uncertainty_sources: List[str]
    improvement_opportunities: List[str]
    validation_timestamp: str

ArtifactMetadata

class ArtifactMetadata:
    artifact_id: str
    file_path: str
    artifact_type: str
    source_tool: str
    format: str
    size_bytes: int
    creation_timestamp: str
    analysis_id: str

Error Handling

Standard Error Responses

Authentication Error

{
    "error": {
        "code": "AUTHENTICATION_FAILED",
        "message": "Invalid API key provided",
        "status": 401
    }
}

Validation Error

{
    "error": {
        "code": "VALIDATION_FAILED",
        "message": "Invalid request parameters",
        "details": {
            "field": "quality_score",
            "issue": "must be between 0 and 1"
        },
        "status": 400
    }
}

Rate Limit Error

{
    "error": {
        "code": "RATE_LIMIT_EXCEEDED",
        "message": "API rate limit exceeded",
        "retry_after": 60,
        "status": 429
    }
}

SDK Examples

Python SDK

Installation

pip install modelseed-reasoning-framework

Basic Usage

from modelseed_reasoning import ReasoningFramework

# Initialize client
client = ReasoningFramework(api_key="your_api_key")

# Enhanced analysis with full intelligence features
result = client.analyze(
    query="Analyze E. coli growth under glucose limitation",
    enable_reasoning_trace=True,
    enable_quality_assessment=True,
    enable_artifact_intelligence=True,
    enable_self_reflection=True
)

# Access results
print(f"Quality Score: {result.quality_score}")
print(f"Reasoning Trace: {result.reasoning_trace}")
print(f"Generated Hypotheses: {result.hypotheses}")
print(f"Improvement Suggestions: {result.improvement_suggestions}")

Advanced Usage

# Start reasoning trace
trace = client.start_reasoning_trace(
    query="Complex metabolic analysis",
    analysis_type="comprehensive"
)

# Enhance context
enhanced_context = client.enhance_context(
    query="Analyze E. coli metabolism",
    organism="E. coli K-12",
    conditions={"carbon_source": "glucose", "oxygen": "aerobic"}
)

# Perform analysis with enhanced features
analysis = client.analyze_with_intelligence(
    query="Optimized query text",
    context=enhanced_context,
    trace_id=trace.trace_id,
    quality_threshold=0.85
)

# Get self-reflection insights
insights = client.get_self_reflection_insights(
    analysis_id=analysis.analysis_id,
    include_patterns=True,
    include_biases=True
)

JavaScript SDK

Installation

npm install @modelseed/reasoning-framework

Basic Usage

import { ReasoningFramework } from '@modelseed/reasoning-framework';

const client = new ReasoningFramework({
    apiKey: 'your_api_key',
    baseUrl: 'https://api.modelseedagent.org/v1/reasoning'
});

// Enhanced analysis
const result = await client.analyze({
    query: 'Analyze E. coli growth under glucose limitation',
    enableReasoningTrace: true,
    enableQualityAssessment: true,
    enableArtifactIntelligence: true
});

console.log('Quality Score:', result.qualityScore);
console.log('Hypotheses:', result.hypotheses);

Rate Limits and Quotas

Standard Limits

  • Analysis Requests: 100 per hour
  • Validation Requests: 20 per hour
  • Trace Queries: 500 per hour
  • Quality Assessments: 200 per hour

Premium Limits

  • Analysis Requests: 1000 per hour
  • Validation Requests: 100 per hour
  • Trace Queries: 2000 per hour
  • Quality Assessments: 1000 per hour

Webhooks

Event Types

  • analysis.completed: Analysis finished successfully
  • quality.threshold_exceeded: Quality score above threshold
  • validation.failed: Validation test failure
  • improvement.recommendation_available: New improvement suggestion

Webhook Configuration

POST /webhooks/configure

Request Body:

{
    "url": "https://your-app.com/webhooks/reasoning",
    "events": ["analysis.completed", "quality.threshold_exceeded"],
    "secret": "your_webhook_secret"
}

Changelog

Version 1.0 (June 18, 2025)

  • Initial release of complete intelligence enhancement framework
  • All Phase 1-5 components available
  • Comprehensive API coverage for all features
  • Python and JavaScript SDKs released

For additional support, contact the ModelSEEDagent development team API documentation is automatically updated with each framework release